

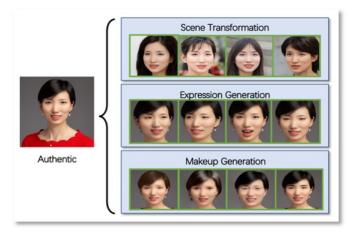
Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection

Beizhe Hu^{1,2}, Qiang Sheng^{1,2}, Juan Cao^{1,2}, Yongchun Zhu^{1,2}, Danding Wang¹, Zhengjia Wang^{1,2}, Zhiwei Jin³

¹Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences

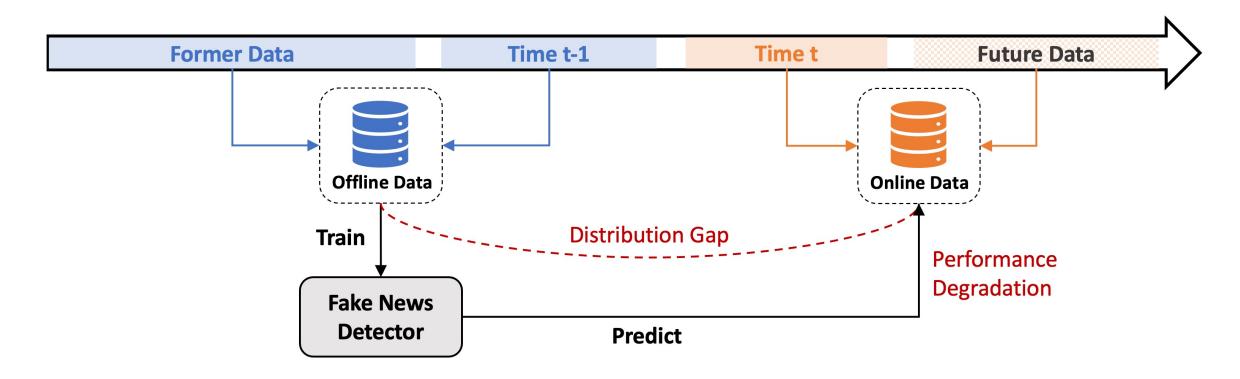
²University of Chinese Academy of Sciences

³ZhongKeRuijian Technology Co., Ltd


MAKE THE WORLD MORE CREDIBLE

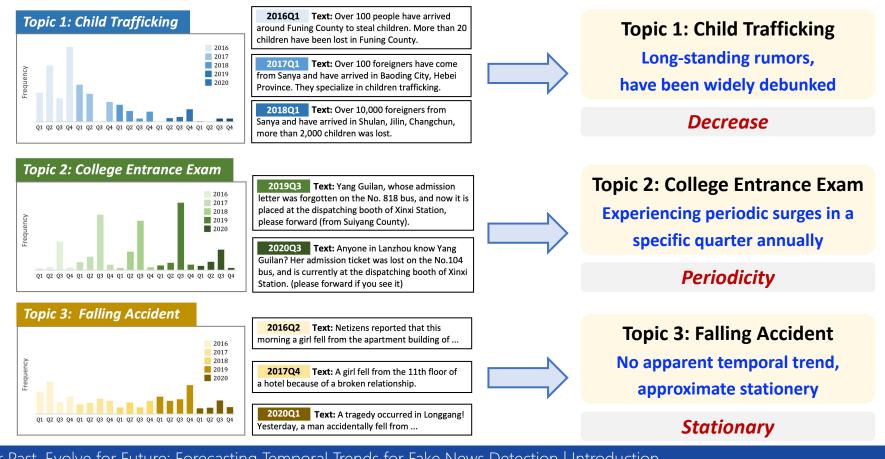
Fake News Detection
Fact-Checking

Deep Synthesized Media
Detection & Attribution

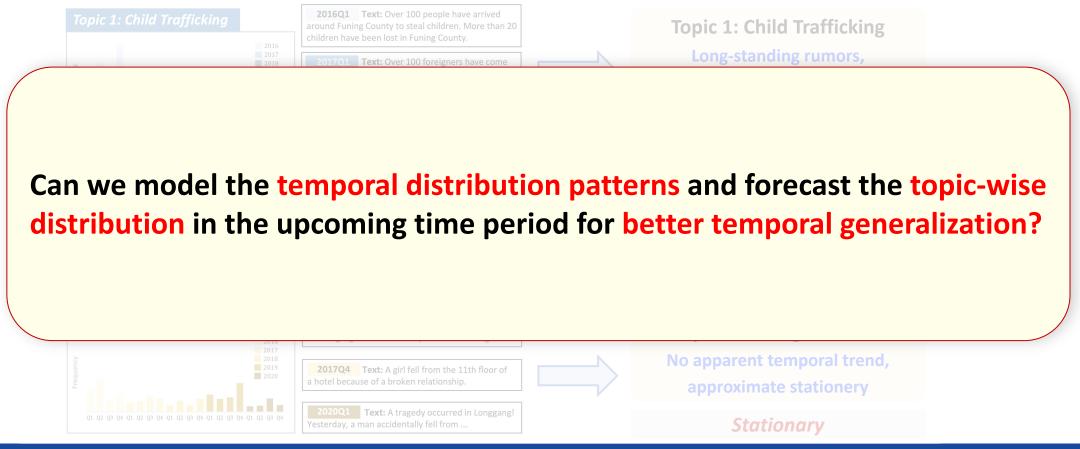


Attacking & Defense for AI Safety

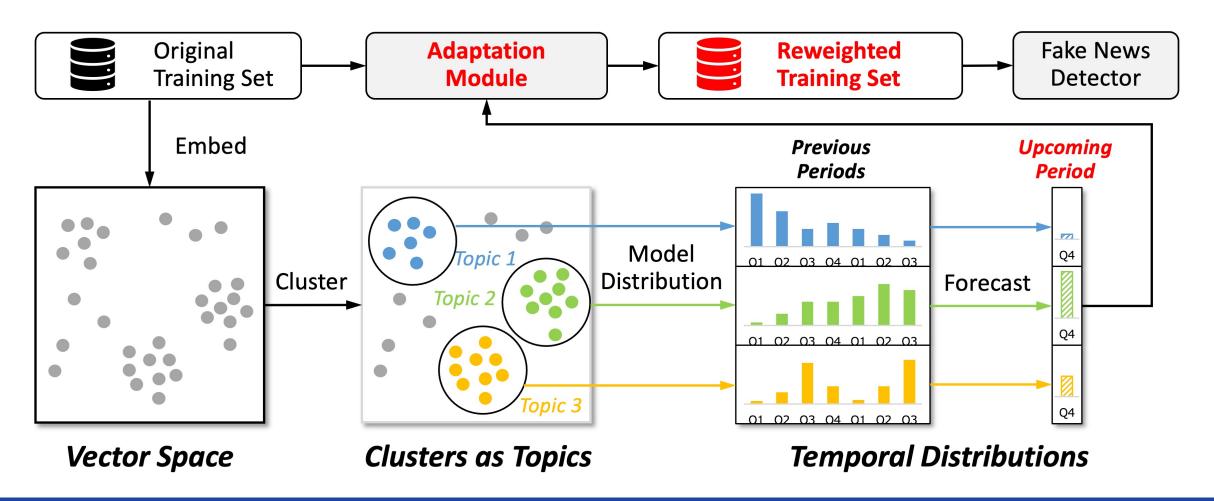
Introduction: Temporal shift in fake news detection


- The rapidly-evolving nature of news leads to the distributional difference between offline and online data, namely temporal shift
- Temporal shift causes significant performance degradation to the fake news detection model trained on offline data when predicting on online data

Introduction: Diverse topic-level temporal patterns


- The appearance of news events on the same topic presents diverse temporal patterns
- These temporal patterns indicate the different importance of news samples in the training set for detection in future quarters.

Introduction: Diverse topic-level temporal patterns


- The appearance of news events on the same topic presents diverse temporal patterns
- These temporal patterns indicate the different importance of news samples in the training set for detection in future quarters.

Method: Forecasting Temporal Trends (FTT) Framework

We propose a framework for Forecasting Temporal Trends (FTT) to guide the detector to fast adapt to future distribution.

Evaluation: Performance Comparison

2020	Metric	Baseline	\mathbf{EANN}_T	Same Period Reweighting	Prev. Period Reweighting	Combined Reweighting	FTT (Ours)
Q1	macF1	0.8344	0.8334	0.8297	0.8355	0.8312	0.8402
	Accuracy	0.8348	0.8348	0.8301	0.8359	0.8315	0.8409
	$\mathrm{F1}_{\mathrm{fake}}$	0.8262	0.8181	0.8218	0.8274	0.8237	0.8295
	$\mathrm{F1}_{\mathrm{real}}$	0.8425	0.8487	0.8377	0.8435	0.8387	0.8509
Q2	macF1	0.8940	0.8932	0.8900	0.9004	0.8964	0.9013
	Accuracy	0.8942	0.8934	0.8902	0.9006	0.8966	0.9014
	$\mathrm{F1}_{\mathrm{fake}}$	0.8894	0.8887	0.8852	0.8953	0.8915	0.8981
	$\mathrm{F1}_{\mathrm{real}}$	0.8986	0.8978	0.8949	0.9055	0.9013	0.9046
Q3	macF1	0.8771	0.8699	0.8753	0.8734	0.8697	0.8821
	Accuracy	0.8776	0.8707	0.8759	0.8741	0.8707	0.8827
	$\mathrm{F1}_{\mathrm{fake}}$	0.8696	0.8593	0.8670	0.8640	0.8582	0.8743
	$\mathrm{F1}_{\mathrm{real}}$	0.8846	0.8805	0.8836	0.8829	0.8812	0.8900
Q4	macF1	0.8464	0.8646	0.8464	0.8429	0.8412	0.8780
	Accuracy	0.8476	0.8647	0.8476	0.8442	0.8425	0.8784
	$\mathrm{F1}_{\mathrm{fake}}$	0.8330	0.8602	0.8330	0.8286	0.8271	0.8707
	$\mathrm{F1}_{\mathrm{real}}$	0.8598	0.8690	0.8598	0.8571	0.8553	0.8853
Average	macF1	0.8630	0.8653	0.8604	0.8631	0.8596	0.8754
	Accuracy	0.8636	0.8659	0.8610	0.8637	0.8603	0.8759
	$F1_{ m fake}$	0.8546	0.8566	0.8518	0.8538	0.8501	0.8682
	${ m F1}_{ m real}$	0.8714	0.8740	0.8690	0.8723	0.8691	0.8827

Observations:

- FTT outperforms the comparing methods across all quarters
- The average improvement of F1 fake is larger than that of F1 real

Evaluation: Performance Comparison

Break down the performance on the testing set according to the existence of their topics.

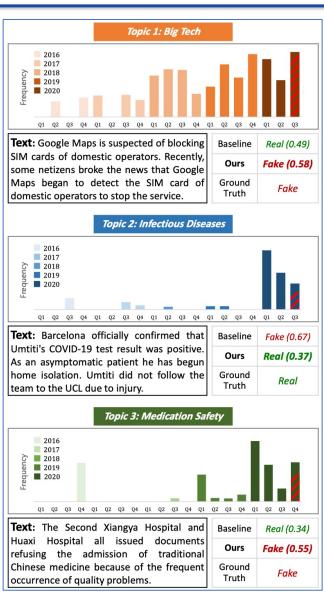
Subset of the test set	Metric	Baseline	FTT (Ours)
	macF1	0.8425	0.8658
Existing Topics	Accuracy	0.8589	0.8805
	$F1_{fake}$	0.7997	0.8293
	$F1_{\rm real}$	0.8854	0.9023
	macF1	0.8728	0.8846
Now Topics	Accuracy	0.8729	0.8846
New Topics	$F1_{fake}$	0.8730	0.8849
	$F1_{\rm real}$	0.8727	0.8843

Observation:

• FTT achieves performance improvements on both the Existing Topics and the New Topics subsets

Evaluation: Case Study

Objective:


Evaluation of FTT Framework

How to do:

 Select topics assigned positive weights according to the forecasted results of the frequencies.

Results:

 The detector flips its previously incorrect predictions in cases after training on the reweighted set

Conclusion

Contributions

- **Problem:** To the best of our knowledge, we are the **first** to incorporate the characteristics of topic-level temporal patterns for fake news detection.
- Method: We propose a framework for Forecasting Temporal Trends (FTT) to tackle temporal generalization issue in fake news detection.
- Industrial Value: We experimentally show that our FTT overall outperforms five compared methods while maintaining good compatibility with any neural networkbased fake news detector.

Project

THANKS.

Our code is available at https://github.com/ICTMCG/FTT-ACL23.

Feel free to contact Beizhe Hu (hubeizhe21s@ict.ac.cn) for any questions!

